A SYMPLECTIC INTEGRATOR FOR HILL'S EQUATIONS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Symplectic Integrator for Hill’s Equations

Hill’s equations are an approximation that is useful in a number of areas of astrophysics including planetary rings and planetesimal disks. We derive a symplectic method for integrating Hill’s equations based on a generalized leapfrog. This method is implemented in the parallel N -body code, PKDGRAV and tested on some simple orbits. The method demonstrates a lack of secular changes in orbital e...

متن کامل

A Symplectic Integrator for Riemannian Manifolds l

There exist a number of mechanical systems having configuration and phase spaces that are differentiable manifolds which are not open subsets of Euclidean space. The spherical pendulum, which has configuration space the 2-sphere, and a single rigid body, with configuration space the Lie group SO(3), are two common examples. Integration algorithms, on the other hand, are usually set in the Eucli...

متن کامل

A Symplectic Integrator for Riemannian Manifolds

The connguration spaces of mechanical systems usually support Riemannian metrics which have a explicitly solvable geodesic ows and parallel transport operators. While not of primary interest, such metrics can be used to generate integration algorithms by using the known parallel transport to evolve points in velocity phase space.

متن کامل

Anomaly in Symplectic Integrator

Effective Liouville operators of the firstand the second-order symplectic integrators are obtained for the one-dimensional harmonic-oscillator system. The operators are defined only when the time step is less than two. Absolute values of the coordinate and the momentum monotonically increase for large time steps. PACS numbers: 05.10.-a, 02.10.Hh

متن کامل

A minimal-variable symplectic integrator on spheres

We construct a symplectic, globally defined, minimal-variable, equivariant integrator on products of 2-spheres. Examples of corresponding Hamiltonian systems, called spin systems, include the reduced free rigid body, the motion of point vortices on a sphere, and the classical Heisenberg spin chain, a spatial discretisation of the Landau–Lifshitz equation. The existence of such an integrator is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Astronomical Journal

سال: 2010

ISSN: 0004-6256,1538-3881

DOI: 10.1088/0004-6256/139/2/803